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Abstract

Generalized Linear Mixed Model (GLMM) has been widely used in small area estimation for 

health indicators. Bayesian estimation is usually used to construct statistical intervals, however, 

its computational intensity is a big challenge for large complex surveys. Frequentist approaches, 

such as bootstrapping, and Monte Carlo (MC) simulation, are also applied but not evaluated 

in terms of the interval magnitude, width, and the computational time consumed. The 2013 

Florida Behavioral Risk Factor Surveillance System data was used as a case study. County-level 

estimated prevalence of three health-related outcomes was obtained through a GLMM; and their 

95% confidence intervals (CIs) were generated from bootstrapping and MC simulation. The 

intervals were compared to 95% credential intervals through a hierarchial Bayesian model. The 

results showed that 95% CIs for county-level estimates of each outcome by using MC simulation 

were similar to the 95% credible intervals generated by Bayesian estimation and were the most 

computationally efficient. It could be a viable option for constructing statistical intervals for small 

area estimation in public health practice.
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1. Introduction

A variety of model-based small area estimation (SAE) methods have been developed and 

applied to health survey data to generate estimates of health-related outcomes for small 
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geographic areas in recent years [1] [2]. Among these methods, the generalized linear 

mixed model (GLMM, also called multilevel or hierarchical model) has gained in popularity 

[3] [4] [5] [6] [7] because it combines different sources of information and error. The 

parameters from GLMM can be applied to the target small area’s demographic subgroups 

via post-stratification to generate a point estimate for the outcome of interest. To take into 

account the uncertainty arising from the models, a statistical interval around the estimate is 

usually constructed.

A credible interval can be drawn directly by Hierarchical Bayesian estimation. In a 

hierarchical Bayesian model, the unknown parameter is treated as a random variable by 

giving it a probability distribution and a prior distribution. The posterior distribution of 

the parameter could be simulated through Markov Chain Monte Carlo (MCMC) samples 

and consequently a posterior distribution of small area estimate is produced. However, this 

approach is computationally intensive for large datasets with complex data structures, such 

as the nationwide Behavioral Risk Factor Surveillance System (BRFSS). In the frequentist 

paradigm, bootstrapping is a common approach for statistical inference purposes when the 

true distribution of the statistic of interest is unknown. It has been used to approximate 

the distribution of the small area estimates [8] [9] [10] and has been shown to make an 

improvement on the coverage accuracy of confidence intervals [11]. Monte Carlo simulation 

is another useful tool to generate sample statistics by using point estimates of model 

parameters and their asymptotic covariance matrix of these estimates [12]. However, these 

two approaches’ performance has not been evaluated in the context of statistical interval 

construction of prediction through real complex health surveys.

BRFSS is a common survey used in small area estimation for indicators of chronic 

diseases, health-related behaviors, and health preventive services. An appropriate approach 

for constructing statistical intervals using BRFSS can help health agencies or local health 

departments optimatize their capacity and understand how reliable the estimate is. This 

study is designed to compare 95% statistical intervals for small area estimates by different 

approaches using Florida 2013 BRFSS data, which had large sample sizes in all 67 counties. 

GLMMs combining unit- and area-level covariates were constructed to generate both state- 

and county-level estimates via post-stratification for three selected health-related outcomes; 

simulated their distributions by using bootstrapping and MC simulation approaches, 

respectively; and were compared with those based on hierarchical Bayesian estimation via 

MCMC. The article continues in Section 2 with a presentation of MRP framework and 

details in 95% interval construction by different approaches. Results are presented and 

discussed in Sections 3 and 4, respectively. Conclusions are drawn in Section 5.

2. Materials and Methods

2.1. Data Source

The 2013 Florida BRFSS was a cross-sectional survey data and a part of the nationwide 

BRFSS (https://www.cdc.gov/brfss/annual_data/annual_2013.html). The county ID was 

obtained through a Data Use Agreement with the U.S.’s Centers for Disease Control and 

Prevention, Division of Population Health, Population Health Surveillance Branch. Because 

it was designed to better estimate county-level prevalence of personal health behaviors that 
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contribute to morbidity and mortality among adults (≥18 years) in Florida by increasing 

the sample size in each of the 67 counties, it could provide county-level direct estimates 

for the selected indictors, which was of research interest to the present study. Over 34,000 

interviews were completed statewide in the 2013 calendar year, with a target sample size of 

500 completed surveys in each county. In the present study, we selected two chronic diseases 

and one health related behavior measures, self-reported doctor-diagnosed chronic obstructive 

pulmonary disease (COPD, 7.6%), self-reported binge drinking (17.6%), and self-reported 

doctor-diagnosed arthritis (26.0%), because they were common indictors but with different 

prevalence levels at the Florida state level, and also have great public health intervention 

importance. Their direct survey estimates at the state or county levels for 2013 were 

obtained from the Florida BRFSS website (https://www.floridahealth.gov/statistics-and-data/

survey-data/behavioral-risk-factor-surveillance-system/_documents/2013county/index.html). 

The data were weighted to the respondent’s probability of selection by county, as well 

as age, sex, marital status, race/ethnicity, education level, and housing type. Details of 

2013 Florida BRFSS methods and the health-related outcomes’ definition can be found on 

their website (https://www.floridahealth.gov/statistics-and-data/survey-data/behavioral-risk-

factor-surveillance-system/index.html).

2.2. GLMM Specification

Let Y be a binary health-related outcome (COPD as an example in the following 

description) from 2013 Florida BRFSS data. We constructed the following multilevel 

logistic regression model for a binary outcome, Y.

P Y ij = 1 = logit−1 Xiβ + rej (1)

In above formula,

Yij: COPD that was answered as yes or no by respondent i from county j (j = 1, 2, …, 

67).

P(Yij = 1) : the probability that the respondent has COPD.

Xi : X is a matrix of predictor variables, and Xi is the row of respondent i. There 

are three individual-level predictor variables: age (18 – 24 years, at 5-year intervals 

for 25 – 79 years, and 80 and above), sex (male and female), and race/ethnicity (Non-

Hispanic white, black, American Indian or Alaska Native, Asian, Native Hawaiian/

other Pacific Islander, other single race, and 2 or more races; and Hispanic) from 

the 2013 Florida BRFSS; and one county-level variable, percentage of the adult 

population below 150% of the poverty line from 2009–2013 American Community 

Survey (ACS, https://www.census.gov/programs-surveys/acs/data.html).

β: a fixed but unknown parameter vector.

rej : the random effect for county j.

We used hierarchical Bayesian estimation and frequentist approaches, respectively, to 

estimate the parameters and simulate their distributions as below. All the analyses were 

implemented in SAS 9.4 (SAS Institute, Cary, NC).
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2.3. Hierarchical Bayesian Estimation via MCMC

Model (1) was constructed in SAS by syntax of PROC MCMC, which utilizes MCMC 

methods to generate a large number of samples. We specified the prior distribution of β to 

be of the form ~N(0, 10,000), the prior distribution of recounty(j) as ~ N(0, σre2 ), where σre2

follows an inverse gamma distribution with shape 0.01 and scale 0.01. Good convergence for 

the model was achieved by simulating 100,000 iterations with another 10,000 “burn in”. To 

achieve independence of observations in the simulated posterior distributions, observations 

were thinned by a factor of 5. The model yielded the posterior distributions of parameters 

which contained M = 20,000 simulated values from all the iterations for each county.

For each iteration, parameter estimates (β) and predicted random effects (rej) from model 

(1) were applied to Florida county-level 2010 Decennial Census population counts. The 

population data were categorized by age (13 groups), sex (male and female), race/ethnicity 

(8 groups) for each county and was linked with ACS’ county-level percentage of the adult 

population below 150% of the poverty line, thus each county had a total of m population 

categories with a maximum 208 (13 × 2 × 8) (some counties lacked one or more categories). 

The predicted probability (pkj) of developing COPD for the kth population category in 

county j was calculated based on the following formula.

pkj = exp Xkβ + rej / 1 + exp Xkβ + rej (2)

where

X is a matrix of demographic variables, and Xk is the row of population category k, and

Xkβ = βage + βsex + βrace + poverty * β poverty .

With pkj, we could calculate the estimated COPD through post-stratification for Florida state 

and for county j as below:

P state = ∑ pkj * Nj /∑Nj
P county(j) = ∑k = 1

m pkj * Nkj /∑k = 1
m Nkj

(3)

where Nj is the population in county j; m is the total population categories in county j, and 

Nkj is the population in the kth category of county j.

By repeating (2) and (3), posterior distributions of Pstate and Pcounty(j) for COPD were 

obtained. From the posterior distribution, the mean and 95% credible interval of Pstate and 

Pcounty(j) were determined.

2.4. Frequentist Approaches

Model (1) was constructed with 2013 Florida BRFSS data and the residual subject-specific 

pseudo-likelihood method was used to produce β  (with variance σβ) and empirical best 
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linear unbiased predictors, rej (with variance σrej). To simulate their distributions, we used 

the following methods, respectively.

2.4.1. Monte Carlo Simulation—The idea behind this approach is to use a random 

number process to create repeated samples of β  and rej obtained from model (1) given their 

normal distributions. Thus Formula (2) was specified as:

pkj = exp Xkβ* + rej* / 1 + exp Xkβ* + rej* (4)

where β* is a normal variate with mean β  and variance σβ  and rej* is a normal variate with 

mean rej and variance σrej. Model (4) was repeated for 1000 times and then applied each pkj

to Formula (3) which generated the 1000 Pcounty(j). The mean and 95% CIs (a range between 

the 2.5th and 97.5th values) were determined.

2.4.2. Parametric Bootstrapping—The difference of this approach with non-

parametric bootstrapping is the source of the bootstrap samples. In non-parametric 

bootstrapping, the bootstrap samples were drawn from the original 2013 Florida BRFSS 

data; while in parametric bootstrapping, bootstrap data were drawn from the model fitted to 

2013 Florida BRFSS data. We adopted Zhang et al.’s [13] revised algorithm as follows.

Step 1. Model (1) was built using Florida BRFSS data from which predicted linear 

predictor (ηij = Xiβ + rej) and the standard error (σij) of ηij were obtained.

Step 2. A random sample of ηij*  was taken from a normal distribution with mean ηij

and variance σij
2 ; and the predicted probability (pij* = eηij*

1 + eηij*
) was calculated. With 

pij* , we could generate a bootstrap sample B of COPD (yij* = 1 or 0) for each 2013 

FLORIDA BRFSS respondent and use it to refit model (1). Predicted probability pkj
was obtained through the model for this bootstrap sample and was used to generate 

Pstate and Pcounty(j) of COPD using Formula (3). Step 2 was repeated for 1000 times 

to compute the mean and 95% CI by taking the 2.5th and 97.5th values for Pstate and 

Pcounty(j) of COPD.

2.4.3. Non-Parametric Bootstrapping—Non-parametric bootstrapping is a 

resampling technique to estimate statistics (means, medians, SEs, and percentiles) by 

sampling the original dataset with replacement. The bootstrap sample usually has the same 

size as the original dataset. Specific steps of non-parametric bootstrapping in this study 

follow:

Step 1. PROC SURVEYSELECT in SAS was used to resample2013 Florida BRFSS 

data (B = 1000 times) randomly with replacement to form B bootstrap samples. In 

this procedure, we stratified random samples by county to ensure each county had the 

sample size as the original Florida BRFSS dataset.
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Step 2. We put all B random bootstrap samples into a single data set. For each 

bootstrap sample dataset, model (1) was constructed to obtain predicted probability 

pkj. Thus we could obtain Pcounty(j) and Pstate of COPD using Formulas (3) for this 

sample. The mean of Pcounty(j) for COPD was calculated over 1000 samples and 95% 

CI was taken as a range between the 2.5th and 97.5th values.

The performance of frequentist approaches was evaluated based on how their estimates 

and 95% CIs were close to estimates and 95% credible intervals generated from Bayesian 

estimation as well as how much their computation time was consumed.

3. Results

3.1. State-Level Estimates and Statistical Intervals Comparison

The mean estimates and 95% statistical intervals for each of the health-related outcomes 

at the state level are presented in Table 1. It shows that the mean estimates at the state 

level in Florida were similar across all approaches for each outcome. The 95% CIs differed 

substantially, though. For estimated COPD, the 95% CIs generated by MC simulation (7.1% 

– 7.8%), parametric bootstrapping (7.1% – 7.8%), and non-parametric bootstrapping (6.8% 

– 7.5%) were all close to the credible intervals generated by Bayesian estimation via MCMC 

(6.9% – 7.6%); the 95% CIs of the direct survey estimate were comparatively wider (6.9% – 

7.9%). Similar patterns were observed for binge drinking and arthritis as well.

3.2. County-Level Estimates and Statistical Intervals Comparison

Figure 1 illustrates the ranked mean estimates and 95% statistical intervals of COPD for all 

the 67 counties. It shows that MC simulation and non-parametric bootstrapping produced 

similar 95% CIs with 95% credible incidence produced by Bayesian estimation for all 

the county-level estimates. In comparison, parametric bootstrapping yielded much narrower 

CIs; while the direct survey estimation generated much wider CIs for some counties. The 

distributions of estimates for binge drinking (Figure 2) and arthritis (Figure 3) showed 

a similar pattern to COPD (Figure 1). The total computational time taken by different 

approaches was shown in Table 2. The time was the total time for all the analysis of 

MRP, including the model construction and post-stratification, for both state- and county-

level estimation. As MC simulation approach did not need to refit models, it was more 

computationally efficient.

4. Discussion

In this study, we generated point estimates for each of the selected outcomes and simulated 

their distributions via an SAE application in a health survey. As expected, we observed 

similar mean estimates for each outcome but different intervals across all the approaches 

at both state and county levels. The method of MC simulation and non-parametric 

bootstrapping yielded the closest 95% CIs to credible intervals by Bayesian estimation for 

all the selected outcomes, but MC simulation was much more computationally efficient than 

the others.
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To generate a proper statistical interval, an approach needs to account for three sources of 

uncertainty: the residual variance, the uncertainty in the fixed effects parameter estimation, 

and the uncertainty in the variance parameters for the random effects. In full Bayesian 

analysis, one uses probability distributions (prior distribution and data likelihood) to model 

the credibility of possible parameter values. The outcome of Bayesian analysis, the posterior, 

models the probability of each possible parameter value being true given the prior and 

likelihood [14], so it takes fuller account of uncertainties and therefore it yields reasonable 

credible intervals when applied to SAE. However, in public health practice, the frequentist 

approach is often used and may continue to be dominant because the common criticism of 

Bayesian method is its specification of prior distribution and computational intensity [2].

In the framework of model-based estimation, parametric bootstraps for linear mixed models 

have been introduced to estimate mean squared error (MSE) by Laird and Louis [15], 

Pfeffermann and Tiller [16], Butar and Lahiri [17]; non-parametric bootstraps were proposed 

by Pfeffermann and Tiller [16]; double bootstraps were also proposed by several researchers 

[18] [19] [20]. Bootstraps were also used to estimate MSE in logistic mixed model for 

small area estimation [21]. The essence of parametric bootstrapping is the drawing of 

pseudo-samples from a model fitted to the original sample [22]. Although it incorporates 

the variability of the model parameters, it only uses a finite sample of the original data to 

approximate the estimator’s distribution [9]. Therefore, it yielded comparatively narrower 

CIs which would not change substantially by increasing the bootstrap simulation B but 

could be related to the prevalence of the outcome. Non-parametric bootstrapping achieved 

similar CIs around the mean as Bayesian estimation. Novkaniza et al. found that parametric 

bootstrapping’s CIs was narrower than nonparametric bootstrapping’s CIs for small area 

estimates as well [10]. Both bootstrapping, however, were also computationally intensive 

and is not efficient for large scale small area estimation in a public health application.

For example, the U.S. CDC’s PLACES Project (www.cdc.gov/PLACES) provided model-

based estimates for 27 measures of chronic disease, health-related behavior, and prevention 

service at U.S. county, incorporated place, ZIP Code Tabulation Area, and census tract levels 

using the nationwide BRFSS, as opposed to just a single state’s BRFSS as the data source 

in this study. Given the large dataset with more than 400,000 respondents per year and 

complex data structure of the nationwide BRFSS, inclusion of multiple measures, along with 

multiple geographic area levels, the full Bayesian hierarchical model would be incredibly 

high-dimensional and extremely time consuming; the model construction could run out of 

the computational memory and the entire process would be very impractical to implement. 

MC simulation turned out to be a more reasonable and practical choice because it not only 

produced similar CIs to the credible intervals generated from Bayesian hierarchical models, 

but it also was more efficient in terms of computational time.

This study is subject to several limitations. It should be noted that the mechanisms of 

Bayesian and frequent approaches are inherently different. Therefore, the intervals generated 

by hierarchical Bayesian models simply play a role of “benchmark value” for comparison 

purpose. Second, this study only focused on the sampling approaches, but there are some 

other techniques to create statistical intervals. Third, as we run into an “out of computational 
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memory” issue when we attempted to use nationwide BRFSS as an illustration, we had to 

select a subset of BRFSS.

5. Conclusion

Statistical intervals may help local health departments identify if different counties have 

different sources and needs, or if different sub-population groups in the small areas are 

equally exposed to a particular disease. Different approaches may produce different intervals 

as shown in this study. Given their comparison with the Bayesian estimation and their 

computational performance, the MC simulation approach produced reasonable CIs for 

multilevel model-based small area estimates but was much simpler to implement and could 

be applied as a suitable option for public health practice.
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Figure 1. 
The mean estimates and 95% credible incidence (Bayesian estimation) and 95% CIs (other 

approaches) for COPD in 67 counties, Florida.
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Figure 2. 
The mean estimates and 95% credible incidence (Bayesian estimation) and 95% CIs (other 

approaches) for binge drinking in 67 counties, Florida.
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Figure 3. 
The mean estimates and 95% credible incidence (Bayesian estimation) and 95% CIs (other 

approaches) for arthritis in 67 counties, Florida.
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Table 1.

The means and 95% statistical intervals of the state-level estimates (%) for each outcome by different 

approaches for Florida, 2013.

COPD Binge drinking Arthritis

Mean 95% interval
1 Mean 95% interval

1 Mean 95% interval
1

Bayesian estimation, model-based 7.2 6.9, 7.6 15.5 14.9, 16.2 25.7 25.1, 26.3

MC simulation, model-based 7.5 7.1, 7.8 15.7 15.1, 16.4 25.8 25.2, 26.4

Parametric bootstrapping, model-based 7.4 7.1, 7.8 15.6 14.8, 16.0 26.0 25.5, 26.6

Non-parametric bootstrapping, model-based 7.4 6.8, 7.5 15.3 15.0, 16.3 25.5 24.9, 26.1

Direct survey estimate 7.4 6.9, 7.9 15.6 14.6, 16.6 26.0 25.1, 26.9

1.
95% intervals are credible incidence (Bayesian estimation) or confidence intervals (other approaches).
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Table 2.

Total computational time (seconds) of different approaches for each of the outcomes.

Model construction Post-stratification

Bayesian estimation 10,800 23,400

MC simulation 12 960

Parametric bootstrapping 1800 42

Non-parametric bootstrapping 1800 42
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